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Abstract: A styrene-1% divinylbenzene resin whose phenyl rings have been
derjvatized with --PPh2 groups serves as an "anchor" for Fe(CO)n (n = 3,4)
groups; the anchor isthe Fe-P bond. The photocatalytic activity of
suspensions of the polymer-anchored Fe(CO)n has been compa;ed to homogeneous
solutions of Fe(CO)n(PPh3)5_n (n =5, 4, 3). 1-Pentene isomerization and
reaction with HSi£t3 can be effected with each system. Observed quantum yields
for 1-pentene isomerization exceed unity for each catalyst precursor‘and the

initial trans- to cis-2-pentene ratio depends on the catalyst precursor,

implicating the retention of the triarylphosphine groups in the actual catalytically

active species. Irradiation of Fe(CO)n(PPh3)5_n (n =4 ) results in loss
of Co;ggi PPh3,suggesting a photoinert anchor to the Fe(CO)n groups in the
polymer systems. These experiments establish the viability of photogenerating
catalysts anchored to polymer supports without destruction of the anchor bond

in the photogeneration procedure.
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Recent studies have shown that photogenerated coordinatively unsaturated
intermediates are capable of serving as catalysts for a variety of reactions

involving olefins. 10

We have reasoned that it may be possible to generate
metal-centered catalysts which are extensively coordina%ive1y unsaturated by
irradiation of polymer-anchored, but fully coordinatively saturated, organo-
metaliic complexes. The simple notion is that the polymer-anchored species
may be "matrix-isolated" in the sense that the photogenerated intermediates
are incapable of reacting with one another to generate catalytically inactive
aggregates. It is well established, for example, that irradiation of mono-
nuclear binary metal carbonyls in rigid matrices at low temperature results

in -extensive loss of CO and in several instances all CO's can be dissociated
from the metal to generate elemental meta].]0'2] Consequently, the generation
of multiply coordinatively unsaturated specie§ seens a reasonable possibility
in the anchored systems. Importantly, such an approach may provide a way
to study the reactions of such sites under cqnditions wﬁere sufficient thermal
activation energy exists to study catalytic chemistry but at milder conditions
than would be required for thermal generation of multiple coordinative
unsatﬁration.

B& now the study of polymer-anchored thermal catalysts is well known,zz"37
but polymer-anchored systems exposed to light have received little detailed
study. The aim of this report is to describe our results pertaining to the
photocataiytic activity of Fe(CO)n (n=3,4) species anchored to a phosphinated styrene-
divinylbenzene resin.. An important component of the results concerns the
parallel study of homogeneous "models" of the polymer-anchored systems,

Owing to a number of previous photocatalytic studies,g’lo there is considerable

expectation that the Fe(CO)a-based systems could serve as photocatalysts

for olefin reactions.

SACSRMARE SR L, W T 2 e DR T - A

s




Results

a. Systems Studied. The polymer-anchored Fe(CO)n system used in this study

() |
5 ¢

-r'ahge of 3-5. This ratio is a variable which can be manipulated by - Pth loading,

- crosslink density, etc. Future studies will be concerned with such variations. #

was prepared according to the procedure indicated in reactions (1)-(3). The

ol . =
FeBri Br‘ ()
_llm PPha (é)

|

P.P'“a o OO-rree), o

n=3,4%

details are given in the Experimental, but we note here that the polymer is a )
200-400 mesh styrene-1% divinylbenzene microporous resin,

There is some uncertainty concerning the ratio of @— Pth)zFe(,CO)3 to

.®—'Pp'hé)Fe(_C0)4 species on the phosphinated polymer, but infrared spectra in

. in the éarbonyl stretching region reveal peaks ascribable to a distribution

consisting principally of n = 3 and 4; the iron carbonyl-containing resins

exhibit broad, strong carbonyl abso'rﬁtions at 2045, 1968, and 1932 cm'] for the

—Pth)Fe(CO),i sites and a single absorption at 1876 cm'] for .

CID—PPh?_)zFe(_(:O)3 sites. ‘These agree well (considering solid phase effgcts)
with the spectra of Fe(C0)4PPh3 and Fe(C0)3(PPh3)2 model compounds (see

Table I). From the relative absorption intensities of these model compounds,

one can estimate the@- Pth)Fe(C0)4/ @ -Pth)zFe(CO)3 ratio to be in the

o

The "anchor" for the catalyst precursor on the polymer is a triaryl-

- phosphine. Therefore, we have used Fe(CO)"(PPh3)5_n (n = 4,3) as homogeneous

models for the comparison of catalytic activity. We have also made some direct
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comparisons with Fe(CO)s, in order to assess the effect of having the
triarylphosphine in the coordination sphere. The electronic absorption
properties of the various catalyst precursors have not been studied in

detail, but all of the species absorb strongly in the near-uv. The lowest

excited states of the complexes logically involve transitions originating

yz, dxy,
strongly sigma-antibonding dZZ orbital. This assignment follows from the

from the filled d orbitals (dxz, d dxgyZ) and terminating in the

fact that Fe(0) is d8 and there is only one empty orbital at low energy; also,
Fé(_CO)5 has an estabh’shed38 d-d assignment for its lowest absorption
feature.3 The d-d assignment provides a general rationale for the

39,40 of the metal complexes, but a key question

photosubstitution lability
remains as to whether the anchor-Fe bond is photoinert, vide infra.

In our studies of the photocatalytic behavior of the triarylphosphine-iron
carbonyl systems we have used alkene isomerizétion and alkene reaction with
tria]kxlsi]ahé as probe reactions. In particular, we have investigated the
photocatalyzed isomerization of l—péntene and the reacticns of 1-pentene with
HSiEt3. These substrates have been studied in connection with characterization

of the photocatalytic properties of Fe(CO)s.g’.'0

b. Qué]itative Photocatalytic Beavhior of Polymer Anchored-Fe(CO)n;__ AN
studies of the polymer-anchored FeC0), system were carried out at 25f using $
suspension of the derivatized polymer in a suitable degassed solution. There
is litt]e.or na catalytic behavior observed at 25° in the dark, with réspecf'to
1-pentene 1somerizat16n or l-pentene/Et351H reactions, mnor is there any
catalytic activity (1ight or thermal) associated with the phosphinated, but
non-metallated, polymer. However, irradiation of a suspension of the % A
polymer-anchored Fe(CO)n with near-uv 1ight results in T—pentene 1somefizatibﬁ?.
to cis-and trans-2-pentene and/or reaction with Et351H to yield pentane,
(g_-pentyl)S1Et3 and several isomers of (pentenyl)S1Et3. reactions (4) an& (5).

Irradiation of aerated susbensions gives no catalytic chemistry,
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The importance of polymer swelling is reflected in the data given in
Table II showing the amount of photocatalyzed 1-pentene isomerization in
1séoctane vs. benzene solvent. The isooctane yields little or no swelling
and we observe little, if any, isomerization. However, in benzene, where the

polymer does swell, we observe significant conversion to cis- and trans-2-pentene

on the same time scale. Apparently, high concentrations of the alkene are
- sufficient to swell the polymer, since the bulk of the work has been successfully
carried odt in suspensions of the polymer in solutions of initially neat
*1-pentene or a 1/1 mole ratio of 1-pentene/Et,SiH.

Several other qualitative points are worth noting here. The photocatalysis
requires continuous irradiation; i.e. when the light is turned off reaction stops,
but can bereinitiated by illumination. Additionally, we did not observe reaction
of alkene and silane by distilling‘a 11 mole ratio of 1-pentene/Et3SiH :

onto the polymer that had been irradiated under vacuum. These observations
suggest, but do not prove, that photogenerated coordinative unsaturation of

the anchored catalyst does not persist for a very 1ong'period.. We can report,
'thdugh. that the polymer anchored catalyst is very durable, We have observed,
for example, as many as 2 x 104 molecules reacted per Fe atom present in the
alkene-silane photocatalysis. Additionally, the polymer system is easy to
handle and can be recovered in useful form sub;equent to a photocatalysis

_experiment.

i i mﬂ.&‘ i el

e Cpe—.

-y




. N

€. FPrimary Photoreactions of Phosphine Complexes. A key question concerning the
use oi polymer-anchored catalyst precursors concerns the photostability of the
?nchori“ bond. In the present instance the question is whether photoexcitation
of the Lﬁ)—Pth)s_nFe(CO)n will break Fe-P bonds. Qualitatively we can state
that Fe(CO)n(PPh3)5_n species are not detectable in thé<solution when
(::)v-Pth)s_nFe(CO)n is irradiated in degassed benzere solutions of 0.1M PPh,,
and large turnover numbers are obtained in catalysis experiments without evidence
for loss of metal from the polymer. Naturally, this does not mean that the Fe-P
bonds are inert; Fe(CO)n units may be wandering through the polymer with little
probability for escape. In such a case we could have catalytic chemistry occurring

at non-anchored Fe(CO)n units. However, the following experiments with the

mode]'complexes suggest that the Fe-P bonds are photoinert relative to the

Fe-C bonds.

The model complexes, Fe(C0)4PPh3 and Fe(C0)3(PPh3)2, have been irradiated )

. with near-uv light to determine the relative ptolability of PPh3 and CO

in such comp1éxes. The results should be applicable to the <EZ)PPh2)5_nFe(co)n
system. For Fe(CO)4PPh3 we find that the primary photoreaction is (6). This

hv

Fe(C0)4PPh3 epe Fe(C0)3PPh3 + CO (6)

has been determined in several ways. - First, irradiation at 366 nm in the

presence of 0.1M PPh3 yields Fe(C0)3(PPh3)2 with a quantum yield of 0.4 + 0.04.

The reaction can be followed by ir and the initial chemical yield of Fe(C0)3(PPh3)2
is quantitative. Further.irradiation of isooctane solutions of Fe(C0)4PPh3

in the presence of 0.';ﬂ_P(0Me)3 initially yields a broad ir absorption centered at
1898 cm”! (presumably Fe(C0)3(PPh3)(P(OMe)3). whereas

Fe(CO)5 irradiated in the presence of P(OMe)3 gives peaks initially at

2063(s), 1992(s), 1962(vs), 1949(vs), 1920(vs), and 1910(vs). From Fe(CO)5 a




mixture of Fe(CO) (P(OMe),);  (n = 4, 3) apparently obteins.  Ljterature
values for Fe(C0)4P(OMe)3 are 2063, 1992, 1963, and 1951 cm'], and for
Fe(C0)4(P(OMe) 1 4

1920 and 1912 cm ' are the reported band positions.

3)2’
Irradiation of the Fe(C0)4PPh3 in the presence of P(OMé)3 yields no ir

bands in common with those from Fe(CO)5 (no Fe(C0)4P(0Me3) is ir detectable),
indicating that PPh3 remains coordinated to the Fe. Irradiation of

Fe(CO)4PPh3 in the presence of 1-pentene results in new bands at 2017, 2002, and
1925 cm'] (presumably Fe(C0)3(PPh3)(pentene)); again these are non-coincident
with the bands which result from irradiation of Fe(CO)5 in the presence of

1-pentene at 2084 and 1978 cm”!

associated with Fe(C0)4(pentene)? Finally,
irradiation of Fe(C0)4PPh3 in the presence of HSiEty results in the growth
of new ir bands at 2032(w) and 1962(vs) cn! not at 2093{(w); 2027(m); 2019(s);and

2006(s) cm™! as found? for HFe(C0),SiEt, from irradiation of Fe(C0) . The

3
irradiation of Fe(C0)4PPh3 in the presence of.HSiEt3 in CGDG solvent can be
followed by 1F1nmr and a“hydride resonance is found at 19.0 1. This signal is a
doublet with a 26 Hz coupling constant supporting the formulation of the
product as HFe(C0)3(PPh3)(SiEt3). The important point from all these
Photochemical results is that a different product results from Fe(CO)5
compared to Fe(C0)4PPh3, supporting the notion that reaction (6) is the prevailing
primary photoprocess for Fe(C0)4PPh3:

Wi Fe(C0)3(PPh3)2 likewise is photosensitive in so]ution.

in the preence of nucleophiles or oxidative addition substrates. The

disappearance quantum yield at 355nm is approximately 0.2 in the presence of

AO.]ﬂ_P(OMe)3 in benzene solution. Spectral changes in the ir are not

clean and reflect some combination of CO and PPh3 loss. The initial yield
of Fe(C0)3(PPh3)(P(OMe)3) is less than 20% of the products,indicating that

reaction (7) accounts for the bulk of the primary reaction from the excited

oy
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state. Prolonged irradiation does result in some loss of PPh3,but spectral

Fe(C0)3(PPh3)2 -1:2i—4a- Fe(CO)?_(Pth)2 + CO (7)

data have not allowed a quantitative measure of its importance, The catalysis
results for the 1-pentene reaction are in accord with at least partial re-

tentiqn of both PPh3 groups in the actual catalytically active species.

d. Photocatalyzed 1-Pentene Isomerization. Irradiation of any of the iron

carbonyl species studied results in 1-pentene isomerization. The key results
are detailed in Table II1I. No evidence was found for dny reaction of the alkene
other than the isomerization. Several impdrtant results were found relating

to the quantum yield and ratio of primary photoproducts.

We find that the isomerization quantum yield exceeds unity in every case.
For the three homogeneous precursors it appears that the degree of PPh3
substitution is consequential with respect to the observed quantum yields.
However, the observed quantum yields 1ikely do not refléct the true differences
among the various catalytic species actually produced. Rather, the observed
quantum yields likely reflect differences in the efficiency of catalyst
genergtion as well as differences in the rate of isomerization for the
actual'cata]yst. - For example, the quantum yield for CO extrusion from
Fe(CO)5 is believed to be nearly unity, whereas we find only 0.4 + 0.04 for
CO release from Fe(C0)4PPh3. The observed quantum yields for the
@Pth)Sj;e(CO)n system are the smallest, but the values are lower limits,
because we really havé no accurate way to determine the fraction of photons
which are actually effective in producing electronic excitation, The
fmportant finding is that the quantum yields exceed unity,confirming that a
catalyst is photogenerated Which effects a number of turnovers before

requiring reactivation with 1ight. The polymer-anchored catalyst precursor

gives quantum yields which approximate the values for the homogeneous analogues.

w
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The second key finding from the alkene isomerization data concerns the /b

initial ratio of the 2-pentenes formed from 1-pentene. Each precursor gives a

differeni ratio, implying that the catalytically active species formed retains

the triarylphosphine(s). In particular, it is very evident that the polymer
does not approximate Fe(CO)5 but more closely resembles what would be expected
from a mixture of Fe(C0)4PPh3 and Fe(CO)3(PPh3)2. The change in (trans/cis)
ratio with variation in the catalyst precursor along with the results of the
photochemical study of Fe(CO)4PPh3 and Fe(C0)3(PPh3)2 allow a

very important conclusion: the anchoring bond to the pho*togenerated catalyst
is effectively inert to the photocatalysis conditions. At least during the
initial stagés of the photoreaction, the catalytically active species is very
likely anchored to the polymer. There may well be a cage effect tending to pre-
vent net.1oss of the triarylphosphine in the polymer, but the initial isomeri-
zation data provide direct evidence for retention of the phosphine in the

coordination sphere during catalysis. Since the ratio of the linear pentenes

should approach the same thermodynamic ratio at long irradiation times, we

cannot make a comment concerning the long term durability of the Fe-P bonds.

e. Photocatalyzed Reaction of 1-Pentene with HSiEtBL;_ Irradiation of any of
the catalyst precursors in the presence of l-pentene/HSiEt3 gives a distribution

of silicon-containing products as indicated in Table IV. p-Pentane is found in

. amounts equal to the total amount of‘(penteny1)SiEt3. Though differences in

the product distribution are found, ihe qualitative findings for each catalyst
precursor are similar: the (g;penty])SiEt3 is a minor silicon-containinq
product compared to the (,bentenyl )SiEt3 which is found as three isomérs in roughly the
same ratio in each reaction. These data serve to show that the triarylphosphine
groups.do not preclude reaction of the alkene with the trialkylsilane.

The quantum yields have not been determined, but the irradiation times indicate
y1e1&s which will be at least of the order of unity. It is surprising that
there is not a larger dependence of the product distribution with variation

in the catalyst precursor. Apparently, the phosphines exert neither a strong

electronic nor steric effect on the formation of the various silicon containing

_products.
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Conclusions

The résults outlined in this paper show that Fe(CO)n (n = 4, 3) attached
to a phosphinated styrene-1% divinylbenzene resin is photocatalytically active.
Results for photocatalyzed alkene isomerization and alkene reaction with trialkylsilane
using the polymer-anchored system are very similar to results found using
Fe(C0)4PPh3 and Fe(CO)3(PPh3)2 in homogeneous solution. The photocatalytic
activity is logically attributable to the photogeneration of coordinatively
unsaturated iron carbonyl species which then follow a mechanism similar to
that for Fe(CO)5 itse]f?’]o with the perturbation of having triarylphosphine
in the coordination sphere. While the catalytic chemistry is qualitatively
the séme for the polymer suspensions and for the homogeneous complexes, the
resu]fs estabiish the viability of "heterogenizing" photocatalytic systems

and designing photostable anchors which can exert some control over catalysis

product distribution.
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Experimehtal

Preparation of PQlymer—Anchored—Fe(CO)q;_

Benzene was distilled from CaH2 and THF was disti]]ed from potassium/
benzophenone unde.: nitrogen prior to use. Styrene-1% divinylbenzene resin
was purchased from Bio-Rad Laboratories (SX-1, 200-400 mesh). Micro-
analytical analyses were performed by Schwarzkopf Hidroana]ytica] Laboratories,
Woodside, New York.

Styrene-divinylbenzene resins were brominated (Brz, FeBr3, dark) and then
phosphinated (excess LiPth, THF) as previously described.26’27’42
Elemeqta] analysis shows that 3.3% of the starting polymer's phenyl rings are
substjtuted with -PPh2 groups. Fe(CO)n was attached by the thermal displacement
of CO from Fe(CO)5 by polymer-attached phosphine ligands as follows:
Fe(C0)5 (1.78 g, 9.1 mmole) was added to a slurry of the phosphinated polymer
(3.00 g, 0.91 mmole P) in 50 ml of deoxygenated benzene and refluxed under
"2 for approximately 20 hrs. The resin was then filtered, washed extensively
with deoxygenated benzene, and dried in vacuo at 80°C. The catalyst resin
analyzed for 0.58% Fe an! 0.92% P, which corresponds to a P/Fe ratio of 2.86.
This polymer system was used for the reactions with silanes (Table IV), A
second polymer with approximately 29%-of its phenyl rings substituted with vPPhZ
groups (%Fe=4.10; %P=4.47; P/Fe=1.96) which was prepared in a similar manner
was shown to give the same distribution or products. Thé more heavily loaded
polymer was used for the quantitative studies of the 1- penteneisomeﬁzanon (TablellI),
but the 1ightly loaded resin gave similar results.

Preparation of Fe(CO) (PPh,); - (n = 5,4,3). '
Fe(CO)S was obtained commercially and used after distillation. The

PPh3 substituted complexes were prepared as described in the 11terature.43

Fe(CO)4PPh3 was determined to be free of Fe(co)3(PPh3)z and vice versa by ir

-measurements in the CO stretching region, cf. Table I. The electronic
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absorption properties of Fe(CO)5 have been published previous]y.38 Fe(C0)4PPh3

shows only tail absorption below 33,000 cm'] which extends into the visible

to give the complex its golden color. In CH2C12 Fe(C0)3(PPh3)2 exhibits a

shoulder at 430 nm (¢ = 660) and a band maximum at 330 nm (¢ = 2540).

Photocatalyzed 1-Pentene Isomerization.

1 1-Pentene was obtained from Chemical Samples Co. in the highest purity
| available (~99.9%) and passed through alumina prior to use to remove peroxides.
Quantitative énalyses for isomer content were conducted using a Varian Series
1400 or 2400 gas chromatograph equipped with a flame ionization detector and
a.25 ft x %- in. column of 20% propylene carbonate on Chromasorb P operated
at an oven temperature of 25°C. The irradiation source was a GE Black Lite
equipped with two 15W bulbs with output at 355 nm and a width at half-height of
| -~ ~15 nm. The intensity was determined by ferrioxalate actinometry44 to be

-2 x 107% ein/min. :

Neat l-pentene solutions of 2 x 10’34Fe(€0)5 or Fe(C0)4PPh3 were

freeze-pump-thaw degassed five times in 13 x 100 mm ampﬁ]es with constrictions
" ' and hermetically sealed. Polymer samples (5.2 mg, 3.8x10’3 mmol of Fe in 1.0 ml

of 1-pentene) were prepared in the same manner. A small Teflon stirring bar was
L 1ncludéd in all samples for stirring during irradiation... Samples of 2x10'3ﬂ
Fe(CO)3(PPh3)2 were prepared similarly except the solvent was benzehe and the
1-pentene concentration was 5.0M. This procedure was required since Fe(C0)3(_PPh3)2
v - 1s only sparingly soluble in 1-pentene. The sample size in all cases was 1.0 ml

and actinbmetry was carried out under parallel conditions.

Photoca;alyzed Reaction of 1-Pentene and HSiEtg.

General procedures for the photocatalyzed 1-pentene/HSiEt3 reactions were
the samevas those for the isomerization studies. The reaction solutions were
typicall& ~10'3ﬂ catalyst precursor in neat 1/1 (mole ratio) of l-pentene/HSiEt3.
The catalysis products were those identified previous1y,9’]° and they were
analyzed quantitatively by gas chromatography using a 10 ft x % in, 25%

B,8'-oxydipropionitrile on Gaschrome Q column at 50°C.
e e .
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Photochemistry of Fe(CO)n(PPh3)5_n (n = 4, 3).

Irradiation of Fe(C0)4PPh3 and Fe(CO)3(PPh3)2 was carried out in
freeze-pump-thaw degassed hydrocarbon (CGDG’ C6H6, or isooctane) so{ution in
the presence of PPh3, P(OMe)3 1-pentene, or HSiEt3. f}radiation of
Fe(C0)4PPhy in the presence of PFiy yields Fe(CO);(PPhy), quantitatively
(initia]]y) by ir spectral measurements; The 366 nm reaction quantum yield
was determined by irradiation in a merry—go-round45 equipped with a 550 W
Hanovia medium pressure Hg lamp filtered with Corning filter 7737 to isolate »
fhe 366 nm emission. The light intensity was determined by ferrioxalate
actinometry. Samples were 3.0 ml in hermetically sealed 13 mm diameter Pyrex

ampules.

Spectra.

Infrared spectral data were recorded using a Perkin-Elmer 180 spectro-
meter using matched pathlength (0.1 or 1.0 mm) NaCl cells. A Cary 17

spectrophotometer was used to record electronic absorption spectra, and a

Varian T-60 was used to record the position of the hydr1de resonances

(19.04 1) in HFe(CO) (SiEt )(PPh3) relative to SiMe,.
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Table III. Photocatalyzed Isomerization of 1-Pentene.?
Catalyst % Conversion Observed - (trans/gig)c
Precursor (Irrdn Time, min) ¢b
Fe(CO)5 ' 6.2 (2) 117 2.92
11.9 (4) 112 2.93
31.5 (15) 96 3.29
Fe(CO)4PPh3 7.8 (5) 7 1.1
12.7 (10) 58 1.20
16.3 (15) 50 1.32
19.8 (21) 43 1.43
36.2 (60) 28 2412
Fe(C0)3(PPh3)2 8.6 (15) 12 0,56
; 11.2 (30) 1.7 0.57
18.4 (60) 7.7 Q.58
(®)-Pph, ) Fe(co), 3.9 (30) 6.0 0.7
ek o s R 4.8 2,80
10.6 (120) 4.0 1.10
33.8 (720) ‘2.2 ],26

%A1 reactions are carried out in hermetically sealed, degassed ampules at 25°C.
For the homogeneous precursors the concentration was 2 x 10~°M in neat 1-pentene
as solvent except for Fe(CO),(PPh
The polymer suspension was run us%ng 5.2 mg of polymer (see Experimental) in

1.0 ml of 1-pentene (3.8 x 10-3 mmol of Fe per sample).

”o fs the number of 1-pentene molecules isomerized per photon incident on the

sample. The irradiation source was a GE Black Lite.
“Ratio of trans-2- and cis-2-pentene products.

), which was 5.0 1-pentene in benzene as solvent.

2 e L el i
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